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Abstract
Due to the existence of intermediate mesoscopic internal structures, soft matter
exhibits various fascinating non-linear and non-equilibrium phenomena. In
this review article, we focus on microemulsions consisting of water, oil,
and surfactant from the viewpoint of soft matter physics. Microemulsions
exhibit a rich phase behavior as the composition and/or the temperature is
varied. In the middle phase, oil and water mix in the presence of surfactant
molecules to form a mesoscopic bicontinuous structure. To explain the
complex behavior of microemulsions, it is useful to employ phenomenological
approaches such as the Ginzburg–Landau theory or the membrane theory. We
discuss the Ginzburg–Landau theory and also review the Teubner–Strey model,
the Gompper–Schick model, and the two-order-parameter model. Based on
these models, we discuss the structure of the middle phase and its wetting
transition. The membrane theory proposed by Helfrich is also useful for
describing the physical properties of microemulsions. Various structures in
microemulsions, such as droplets, bicontinuous and network structures, are
properly accounted for by the curvature elasticity model. We focus on the
Exxon model which clarifies the physical origin of the middle phase. Within
the phenomenological level of description, we review the dynamical aspects
of droplet and bicontinuous microemulsions. We also give an overview
of microemulsions found in multicomponent polymeric systems (polymeric
microemulsions). A discussion on recent applications of microemulsions
completes the review.
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1. Introduction

When we try to mix oil and water, they separate into two phases by creating a horizontal
interface between them. This everyday phenomenon occurs because the contact area between
the oil and water is minimized due to the large interfacial tension acting between them (3–
5×10−2 J m−2). However, once we add surfactant molecules to such a binary system, the nature
of the solution changes dramatically. A surfactant molecule contains both hydrophilic and
hydrophobic parts. At the oil/water interface, surfactant molecules tend to orient themselves
by pointing their hydrophilic part towards the water and hydrophobic part towards the oil. As
a result, the effective interfacial tension decreases considerably. Thermodynamically stable
solutions consisting of oil, water, and surfactant are called microemulsions. Microemulsions
are almost transparent or light blue liquids. In contrast, milk and margarine which scatter light
are called macroemulsions.

Microemulsions are an important subject of colloid science or surface science, and there
are an enormous number of studies on them. From the viewpoint of applications, surfactants
are used in the preparation of food, drugs, cosmetics and oil recovery systems. Detailed
explanations of the subject are available in [1–3] and other textbooks on colloid chemistry [4].
It is not the purpose of this review article to cover all topics on microemulsions. Instead, I
would like to give an overview of the physical and universal aspects of microemulsions.

Among the various physical approaches, phenomenological models are quite useful in soft
matter physics. In such models, appropriate approximations are employed depending on the
time and length scales of interest. Phenomenological approaches are universal on mesoscopic
to macroscopic length and timescales. My main purpose here is to provide a concise review
of the historically important phenomenological theories that describe mesoscale structures in
microemulsions. Hence, I did not try to make a complete list of the references in this area,
although I do cover the latest developments in this field as much as possible. It should be noted,
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however, that phenomenological models explain only one relatively simple aspect of the rich
and complex behaviors of such systems. There are various time and length scales involved,
and these should be investigated with different experimental and theoretical approaches. By
integrating all the knowledge obtained from various methods, one can draw a whole picture of
microemulsions.

Before describing microemulsions, I should stress here the importance of mesoscale
structures in soft matter. (General overviews of soft matter are available in text books [5–7] or
in review articles [8–10].) Because the constituent molecules are relatively large, a mesoscopic
internal structure spontaneously forms in typical soft matter such as polymers, liquid crystals,
surfactants, or colloids. These structures play an essential role in determining the physical
properties of the material. Examples of mesoscopic length scales (10–1000 nm) are the Flory
radius of a polymer chain, the sizes of colloidal particles, bilayer vesicles, and microemulsion
droplets. The pore sizes in aerosols and the domain sizes in microphase separated block
copolymers also appear to be of the mesoscopic scale.

When the scale of the internal structure is L, the entropic modulus of the material is
typically given by G ∼ kBT/L3, where kB is the Boltzmann constant and T the temperature.
(Note that G has dimensions of energy per unit volume.) For a typical solid, L corresponds to
the atomic length scale, and the order of G ranges from 1010 to 1011 Pa at room temperature.
On the other hand, for colloidal crystals, for example, particles are periodically arranged in
space, and the typical distance between them is much larger than the atomic size. Hence the
modulus of a colloidal crystal can be very small, e.g. 1–100 Pa, or 1010 times smaller than the
modulus of ordinary solids.

The existence of mesoscopic length scales in soft matter is also reflected in the dynamical
properties. If we regard the time needed to diffuse through the distance between the particles
τ as a typical timescale of the system, we have τ ∼ L2/D, where D is the particle diffusion
constant. For simple liquids τ is about 10−12 s, i.e. the particle motion relaxes immediately.
For colloidal crystals as well as other soft matter, τ ranges from 10−3 to 1 s, which is extremely
slow. Hence, the mesoscopic length scale in soft matter leads to dramatic structural changes
under weak external fields accompanied by a long relaxation time. This is why non-linear
and non-equilibrium properties are significant in soft matter. However, there are important
unresolved problems when dealing with the equilibrium properties of soft matter. Although
this review mainly concerns microemulsions in equilibrium, it does provide some discussions
on time-dependent phenomena.

In the next section, we discuss the basic properties of microemulsions, e.g. the interfacial
tension and the phase behavior. Section 3 describes various Ginzburg–Landau theories that
capture the essential features of microemulsions. Among these models, the Teubner–Strey
model and its extensions are discussed in some detail. In section 4, we review membrane theory,
which is based on the notion of curvature elasticity. After that, we introduce the Exxon model
which can describe the phase behavior of microemulsions. Section 5 describes the dynamics of
droplet and bicontinuous microemulsions. Section 6 briefly explains microemulsions found
in polymeric systems, i.e. polymeric microemulsions. Finally, section 7 provides recent
applications of mesoscale structures in microemulsions.

2. Microemulsions

2.1. Interfacial tension

As mentioned in the previous section, a microemulsion is a thermodynamically stable ternary
solution made of water, oil, and surfactant. Hydrophilic and hydrophobic parts coexist in
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a surfactant molecule. Adsorption of such molecules to an oil/water interface considerably
decreases its interfacial tension. Below we explain why adsorption of surfactants reduces the
interfacial tension.

For simplicity, consider an insoluble surfactant which dissolves neither in oil nor in water.
If we add such surfactant molecules to a mixture of oil and water, they adsorb at the oil/water
interface, and the area per surfactant molecule � decreases. However, since the interfaces
cannot adsorb an infinite amount of surfactant, � will saturate at a certain value �∗. What
happens if we further increase the amount of surfactant ? In order to incorporate more surfactant
while keeping � ≈ �∗, the oil and water form a complicated inter-connected structure so that
there is a gain in the interfacial area. The interface characterized by � ≈ �∗ is called the
saturated interface [11].

We can express such a saturated state in terms of the free energy [12]. The free energy per
surfactant molecule in the adsorbed monolayer fa(�) is written as

fa(�) = σow� + fs(�), (1)

where σow is the oil/water interfacial tension, and fs(�) represents the interaction among the
surfactant molecules. The effective interfacial tension is given by

σ(�) ≡ ∂ fa(�)

∂�
= σow + ∂ fs(�)

∂�
= σow −�(�), (2)

where � = −∂ fs/∂� is the surface pressure. Since fa(�) is minimized when � = �∗ for
saturated interfaces, we have σ(� = �∗) = 0. In other words, the effective interfacial tension
vanishes for a saturated interface. Hence, the interfacial tension is zero in the ideal case.

2.2. Phase behavior

By changing the temperature or the composition, microemulsions can be made to exhibit a rich
phase behavior. As depicted in figure 1, three different types of phase separation take place in
microemulsions. Figure 1(a) shows an O/W (oil-in-water) microemulsion in which oil droplets
of mesoscopic size are dispersed in water and form a droplet phase. Section 4 discusses what
determines the size of the oil droplet. This droplet phase coexists with an excess oil phase
O (almost pure oil that cannot dissolve in water), and the whole system is in a two-phase
coexistence state. Such a coexistence state is called a Winsor I microemulsion. The interfacial
tension between the two phases (O/W and O) is roughly σom ∼ 10−4 J m−2, which is two orders
of magnitude smaller than the oil/water interfacial tension σow. The opposite situation occurs
in the W/O (water-in-oil) microemulsion shown in figure 1(c). Here an inverted droplet phase
coexists with an excess water phase, resulting in another type of the two-phase state called a
Winsor II microemulsion.

When the hydrophilic and hydrophobic parts of the surfactant are of comparable size, or
when its affinities for oil and water are balanced, the solution separates into three coexisting
phases. Such a state is called a Winsor III microemulsion as shown figure 1(b). The
intermediate phase due to the gravitational effect that is between excess oil and excess water is
called the middle phase. In the middle phase, almost equal amounts of oil and water mix on
the mesoscopic length scale through the creation of enormous numbers of interfaces saturated
with surfactant. (In some references, the middle phase is called the ‘microemulsion phase’. In
this article, we will use the term microemulsions to refer to any solution containing oil, water,
and surfactant.) As the amount of surfactant increases, the middle phase expands so that the
two excess phases vanish and a one-phase state appears. In this situation, phase separation
does not take place while the oil and water mix completely on the mesoscopic scale. If we
further increase the surfactant content, the self-assembling nature of amphiphilic molecules
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Figure 1. Phase separation and structures of microemulsions. A surfactant molecule has a
hydrophilic head group and a hydrophobic tail group. (a) Oil-in-water (O/W) droplet phase
coexisting with an excess oil (O) phase. The whole solution is in a two-phase coexistence state
(Winsor I microemulsion). (b) Middle (M) phase coexisting with excess oil (O) and excess water
(W) phases. A bicontinuous structure of oil and water domains separated by surfactant monolayers
appears in the middle phase. The whole solution is in a three-phase coexistence state (Winsor III
microemulsion). (c) Water-in-oil (W/O) droplet phase coexisting with an excess water (W) phase.
The whole solution is in a two-phase coexistence state (Winsor II microemulsion).

induces liquid crystalline phases such as the lamellar phase, hexagonal phase, or cubic phase.
All of these phases are characterized by spatially modulated ordered (rather than random)
structures. The lamellar and hexagonal phases are analogous to the smectic and columnar
phases in thermotropic liquid crystals [13].

2.3. Phase diagrams

The phase behavior of ternary systems can be summarized by using the Gibbs phase triangle.
Figure 2, taken from [14], is the Gibbs triangle of a ternary system consisting of water, octane,
and C10E5 (non-ionic surfactant) at 44.6 ◦C. In this phase diagram, ‘1’, ‘2’, and ‘3’ indicate
the one-phase, two-phase, and three-phase regions, respectively, and ‘Lα’ denotes the lamellar
phase. In the two-phase region, the solution separates into two different compositions given by
the end points of the straight lines, which are called ‘tielines’. In the three-phase region, the
system separates into three different compositions corresponding to the vertices of the shaded
triangle. There is also a coexistence region between the one-phase state and the lamellar phase.

The Gibbs triangle of figure 2 is for a particular temperature. Figure 3 schematically
illustrates how the phase behavior evolves as the temperature increases. Here the dotted lines
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Figure 2. Gibbs triangle of a ternary microemulsion consisting of water, octane, and C10E5 (non-
ionic surfactant) at 44.6 ◦C. ‘1’, ‘2’, and ‘3’ indicate the one-phase, two-phase, and three-phase
regions, respectively, and ‘Lα ’ denotes the lamellar phase. Reprinted with permission from [14].

Figure 3. Temperature dependence of the Gibbs triangle for a ternary system consisting of oil,
water, and surfactant. The temperature increases from (a) to (e). TL and TU correspond to the
temperatures at the critical end points. A three-phase coexistence occurs in the temperature range
TL < T < TU. The filled circles indicate the critical points.
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Figure 4. Phase prism of a ternary microemulsion consisting of oil (O), water (W), and surfactant
(S). The vertical axis indicates temperature T . The shaded plane is a cut-through of the phase prism
at a water-to-oil ratio of 1:1. On this plane, the horizontal axis is the surfactant concentration.

Figure 5. Phase diagram of temperature T versus surfactant concentration φs for a 1:1 water-to-oil
ratio. This phase diagram corresponds to the shaded plane in figure 4. ‘1’, ‘2’, and ‘3’ indicate the
one-phase, two-phase, and three-phase regions, respectively.

represent the tielines, the shaded triangle corresponds to the three-phase region, and the filled
circles are the critical points at which the two phases become identical (liquid crystalline phases
are omitted). From this sequence of Gibbs triangles, we see that the three-phase coexistence
(as depicted in figure 1(b)) only occurs when TL < T < TU. At either T = TL or T = TU

corresponding to the critical end points, two of the three phases become identical so that
the interface between them vanishes. For other temperatures, the solution is a two-phase
coexistence state (figure 1(a) or (c)). By stacking a sequence of the Gibbs triangles along
the temperature axis, one can construct a phase prism like the one shown in figure 4.

The shaded plane in figure 4 shows a cut-through of the phase prism at a 1:1 ratio
of water to oil. The vertical and horizontal axes correspond to temperature and surfactant
volume fraction, respectively. On this plane, the phase behavior is typically as in figure 5,
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Figure 6. Freeze-fracture microscopy image of a microemulsion in the one-phase region (the middle
phase). The scale bar indicates 200 nm. The structure is a bicontinuous one in which oil and water
regions are randomly inter-connected. Reprinted with permission from [18].

which is called a ‘fish’ diagram according to the shape of the three-phase body. In this
representation, one can easily see that the three-phase coexistence occurs only when TL <

T < TU. A temperature-induced transition from an O/W microemulsion (figure 1(a)) to a W/O
microemulsion (figure 1(c)) is called a phase inversion.

As stated before, oil and water mix in a single phase when the amount of surfactant is
relatively large. The largest surfactant composition that forms the three-phase body in figure 5
is denoted as φ∗

s . In other words, φ∗
s is the minimum amount of surfactant required to mix oil

and water in the one-phase state. In the applications of microemulsions, it is important to make
φ∗

s as small as possible.
So far we have explained the phase behaviors and the phase diagrams of ternary

microemulsions. In the following, we describe several phenomenological models that explain
these interesting properties of microemulsions. Depending on the length scale, there are various
approaches such as lattice spin models, Ginzburg–Landau models, and membrane theories.
Here we shall mainly discuss the latter two approaches. Readers may find more complete
descriptions in [15–17].

3. Ginzburg–Landau theory

3.1. Teubner–Strey model

Figure 6 shows a typical one-phase microemulsion structure (the middle phase) obtained from
freeze-fracture microscopy [18]. We see that almost equal amounts of oil and water mix to
form a sponge-like bicontinuous structure. The typical size of this bicontinuous structure is
about 10–100 nm, which corresponds to the mesoscopic length scale. Why such a random
bicontinuous structure is thermodynamically stable is an interesting question.

Small-angle x-ray or neutron scattering methods are useful to investigate such bicontinuous
structures. Although microemulsions do not scatter light and look transparent, they do scatter
x-rays and neutrons. Teubner and Strey suggested that the water–water structure function of
the middle phase fits the following functional form [19, 20]:

S(q) = aS(0)

cq4 + gq2 + a
, (3)
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where q is the wavevector, q is its magnitude, and c, g, and a are the phenomenological
parameters. In the middle phase, they satisfy c > 0, a > 0, and g < 0, but we also allow
g to take on a positive value. The values of the parameters depend on the composition and/or
the temperature.

When g < 0, the above structure function shows a peak at a non-zero wavevector

q∗ = (−γ )1/2
(a

c

)1/4
, (4)

where γ = g/
√

4ac. Roughly speaking, this means the typical length scale of the structure in
the middle phase is about 2π/q∗. The fact that equation (3) decays as q−4 in the high-q limit
is in accordance with Porod’s law reflecting the existence of a large number of interfaces [21].
As the surfactant concentration increases and the water-to-oil ratio stays constant at 1:1, the
peak position shifts to higher q so that the structure becomes smaller and the peak intensity
decreases, meaning less contrast between oil and water [22].

Teubner and Strey proposed a free energy functional that reproduces the structure
function (3). They chose the difference in the local volume fractions of oil and water as the
order parameter ψ(r). The suggested Ginzburg–Landau type of free energy functional is [19]

FTS[ψ(r)] =
∫

dr [c(∇2ψ)2 + g(∇ψ)2 + aψ2]. (5)

Notice that this free energy is invariant under the transformation ψ → −ψ .

3.2. Structure of the middle phase

We will use the Teubner–Strey model to discuss the structure of the middle phase. The real-
space water–water correlation function G(r) can be obtained from the Fourier transform of
equation (3). The correlation function G(r) gives the probability of finding water at r given
that water exists at the origin. When −1 � γ � 1, it has the following form:

G(r) = ξλ

32π2cr
e−r/ξ sin

2πr

λ
, (6)

where the correlation length ξ is

ξ =
(

4c

a

)1/4 1

(1 + γ )1/2
, (7)

and the characteristic wavelength λ is

λ

2π
=

(
4c

a

)1/4 1

(1 − γ )1/2
. (8)

Equation (6) is an oscillating function whose amplitude decays exponentially. This oscillation
reflects the ability of surfactant to induce structural ordering between oil and water.

The dimensionless parameter γ measures the ability of the surfactant to form internal
structures. Qualitatively speaking, the surfactant is ‘stronger’ when γ is negative and its
absolute value is larger, whereas it is ‘weaker’ when γ becomes positive. If γ > 1, the
correlation function becomes the Ornstein–Zernike form which decays monotonically, and no
structure exists in the liquid. When γ < −1, the most stable structure is the periodic lamellar
phase. Within the mean-field approximation in which we neglect thermal fluctuations, these
behaviors can be summarized in the phase diagram shown in figure 7.

In figure 7, there are two distinct phases, i.e. disordered and lamellar. The second-order
transition between these two phases occurs at γ = −1. The correlation function G(r) has
an oscillating component for −1 � γ � 1 (structured-disordered phase), whereas it decays

9
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Figure 7. Phase diagram of the Teubner–Strey model in terms of γ = g/
√

4ac. DL at γ = 1 is
the disorder line, and LL at γ = 0 is the Lifshitz line. The boundary between the lamellar and the
disordered phases is at γ = −1. In the structured-disordered phase (−1 < γ < 1), the correlation
function has an oscillating component, whereas in the unstructured-disordered phase (γ > 1), it
decays monotonically. Inside the structured-disordered phase, the structure function has a peak at a
finite wavevector q∗ > 0 for −1 < γ < 0, and at q∗ = 0 for 0 < γ < 1.

monotonically for γ > 1 (unstructured-disordered phase). The line γ = 1 separating these
structures is called the disorder line although it is not a phase boundary. The line γ = 0 (or
g = 0) is the Lifshitz line at which q∗ in equation (4) vanishes. When 0 � γ � 1, G(r)
oscillates in space, but the structure function S(q) does not show any peak. This means the
surfactant is relatively weak. A peak appears in S(q) when −1 � γ � 0, indicating a well
developed structure in the middle phase.

3.3. Gompper–Schick model

The free energy (5) describes the structure of the middle phase, but it can only deal with a
one-phase state. To consider a multi-phase coexistence, Gompper and Schick extended the
Teubner–Strey model in the following way [23].

First, the term aψ2 in equation (5) is replaced so that three-phase coexistence is possible.
Unlike the middle phase, the excess water phase (ψ > 0) or the excess oil phase (ψ < 0) does
not have a mesoscale structure. Hence, these two excess phases have a positive g because the
peak of the structure function is at q = 0. In general, g can be a function of ψ . From these
considerations, Gompper and Schick proposed the following free energy functional [23]:

FGS[ψ(r)] =
∫

dr [c(∇2ψ)2 + g(ψ)(∇ψ)2 + f (ψ)], (9)

where f (ψ) and g(ψ) are given, for example, by

f (ψ) =
⎧⎨
⎩
ω2(ψ − ψb)

2 ψ > ψ0

ω0ψ
2 |ψ| < ψ0

ω2(ψ + ψb)
2 ψ < −ψ0

(10)

10



J. Phys.: Condens. Matter 19 (2007) 463101 Topical Review

Figure 8. (a) The situation in which the middle phase wets the oil/water interface. (b) The situation
in which the middle phase does not wet the oil/water interface and forms a lens. (c) Schematic
representation of the interaction energy V (�) between the oil/water interface. The dotted line is the
result of the mean-field approximation; V (�) is minimized at finite � and hence the middle phase
does not wet the interface. The solid line takes into account van der Waals interactions and/or
thermal fluctuations; V (�) is minimized when � → ∞. In such a case, a macroscopically thick
middle phase wets the oil/water interface.

and

g(ψ) =
{

b0 |ψ| < ψ0

b2 |ψ| > ψ0.
(11)

Here, the constants are taken to be b0 < 0 and b2 > 0. The function f (ψ) is continuous when
ψ0 = ψb/(1 + √

ω0/ω2), and is minimized when ψ = 0 and ±ψb. Using the above model,
Gompper and Schick investigated interfacial profiles, elastic properties of interfaces, and phase
behaviors of microemulsions. We refer the reader to [15] for their results.

3.4. Wetting transition by the middle phase

Here we briefly describe the wetting of the oil/water interface by the middle phase. This is
an interesting phenomenon in which the structure of the middle phase affects the macroscopic
behavior of the solution.

In section 2.2, we saw that the middle phase is located between the two excess phases.
This means the oil/water interface is wet by the middle phase. Such a wetting phenomenon
occurs for relatively short and weak (large γ ) surfactants. For longer and stronger (small
γ ) surfactants, the middle phase does not wet the oil/water interface and forms a lens as
depicted in figure 8. The transition from the non-wet state to the wet state is called the wetting
transition [24].

To judge whether the oil/water interface is wet by the middle phase, we write the excess
energy due to the interface as a function of the thickness of the middle phase �;

σ(�) = σwm + σom + V (�). (12)

11



J. Phys.: Condens. Matter 19 (2007) 463101 Topical Review

Here, σwm and σom are the water/middle phase and oil/middle phase interfacial tensions,
respectively, and V (�) is the interaction potential between the interfaces. The effective oil/water
interfacial tension σow is determined from the minimum of σ(�). If the minimum occurs at finite
�, the middle phase does not wet the oil/water interface. (A finite thickness is microscopic
and the middle phase cannot form a macroscopic phase.) On the other hand, if σ(�) takes a
minimum value at infinite �, then the interface will be wet by a macroscopically thick middle
phase.

The interfacial properties are strongly dependent on the bulk properties. Using their model,
Gompper and Schick showed that V (�) is similar to equation (6), which is the product of
an exponentially decaying function and an oscillating component [23]. A continuous wetting
transition is expected at γ = 1 since the minimum of V (�) continuously goes away to infinity
as γ → 1. (Notice that equation (8) diverges as γ → 1.) As shown in figure 8(c), however, the
minimum of σ(�) always appears at finite � as long as −1 < γ < 1. One might conclude that
the middle phase never wets the oil/water interface. Such a conclusion contradicts the observed
behavior in real microemulsions in which wetting indeed takes place.

To resolve this problem, we need to take into account the van der Waals interaction between
the interfaces and also the steric interaction due to thermal fluctuations. The van der Waals
interaction per unit area behaves roughly as W�−2, where W is the Hamaker constant. Because
the electron density of the middle phase takes an intermediate value between those of oil and
water, W�−2 is always positive. Therefore, the minimum of V (�) at finite � is shifted upward,
as shown in figure 8(c), and the potential minimum goes away to � → ∞.

Thermal fluctuation plays a similar role as van der Waals repulsion. It causes two interfaces
(water/middle phase and oil/middle phase) to fluctuate; they collide with each other so that
the allowed configurations are restricted. This reduces entropy and leads to a steric repulsive
interaction. Thus, the same argument as above applies here. According to experiments using
various surfactants, the middle phase that wets the interface is characterized not only by γ < 1
(below the disorder line) but also by γ < 0 (below the Lifshitz line) [25–27].

3.5. Two-order-parameter model

In the above Ginzburg–Landau model, the local volume fraction difference ψ(r) between oil
and water is chosen as the order parameter. According to the theory of critical phenomena,
the coefficient a in equation (5) is proportional to the temperature difference T − Tc measured
from the critical temperature Tc. Since a is taken to be positive in the above models, the middle
phase is expressed as a high-temperature disordered phase (ψ = 0). This means that within the
single-order-parameter model, the local structure (or the separation between oil and water) of
the middle phase is induced by thermal fluctuations.

A different approach is to introduce the surfactant concentration ρ(r) and construct a
two-order-parameter Ginzburg–Landau model using ψ and ρ [28, 29]. In this model, it is
essential to consider the coupling between ψ and ρ. Since the free energy of the middle phase
should be invariant under the transformation ψ → −ψ , the possible coupling terms are such
as ρψ2, ρ(∇ψ)2, and (∇2ρ)ψ2. For example, Komura and Kodama proposed the following
model [29]:

FKK[ψ(r), ρ(r)] =
∫

dr [c(∇2ψ)2 + g(∇ψ)2 − aψ2 + uψ4 + eρ2(ρ − ρs)
2 − sρ(∇ψ)2],

(13)

where the phenomenological parameters c, g, a, u, e, s, and ρs are all taken to be positive. The
last coupling term represents the fact that the surfactant adsorbs to the oil/water interface to
lower its interfacial tension (represented by the coefficient of (∇ψ)2). For saturated interfaces,
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the parameters are chosen to satisfy g = sρs . Since the coefficient of the ψ2 term is negative
in equation (13), the middle phase is a low-temperature one. Using this model, Kodama and
Komura investigated the phase separation dynamics, or the rheology of the middle phase [30].

A vector nature of the surfactant molecule was taken into account in a different two-order-
parameter model proposed by Chen et al [31].

4. Membrane approach

4.1. Curvature elasticity energy

Microemulsions can be described from a different point of view from that of the Ginzburg–
Landau theory. As mentioned in section 2, surfactant molecules adsorb to oil/water interfaces
to form monolayers which are in the fluid state. One can regard such a monolayer as a two-
dimensional fluid whose thickness is negligibly small compared with its lateral size. Fluid
membranes are very flexible and their configurations are characterized by the membrane
curvature. Membrane theory is useful for describing large-scale phenomena such as the phase
behavior of microemulsions.

Helfrich proposed the following curvature elasticity energy per unit area of the
membrane [32]:

fc(c1, c2) = 1
2κ(c1 + c2 − 2c0)

2 + κ̄c1c2

= 2κ(H + c0)
2 + κ̄K , (14)

where c1 and c2 are the two principle curvatures. The combinations H = −(c1 + c2)/2 and1

K = c1c2 are the mean curvature and the Gaussian curvature, respectively. These quantities
are the two invariants of a two-dimensional surface. The coefficients κ and κ̄ are called the
bending modulus and the saddle-splay modulus, respectively. Note that these moduli have the
dimension of energy. While κ must always be positive because of the stability, κ̄ can be both
negative and positive. According to the Gauss–Bonnet theorem of differential geometry, the
integral of the Gaussian curvature K over the whole surface is constant as long as the topology
of the membrane is fixed.

The quantity c0 is the spontaneous curvature that reflects the asymmetry between the inside
and outside of the membrane. As we explain later, the phase inversion mentioned in section 2.3
occurs when c0 changes sign. In the case of non-ionic surfactants, the spontaneous curvature
vanishes at the temperature where the three-phase body meets the one-phase region (see
figure 5). There are theories which relate the elastic moduli κ and κ̄ to the phenomenological
parameters c, g, and a of the Teubner–Strey model in equation (5) [33, 34].

4.2. Emulsification failure

We now discuss the relation between the curvature elasticity energy and the phase behavior
of microemulsions [35]. Let the volume fractions of oil, water, and surfactant be φo, φw,
and φs, respectively. Due to the incompressibility condition, these quantities amount to
φo + φw + φs = 1. For simplicity, we assume that all surfactant molecules adsorb to oil/water
interfaces to form monolayers of a thickness δ that is almost equal to the surfactant size.

Consider a droplet phase in O/W microemulsions. We see below that the droplet size is
uniquely determined by the average composition. We denote the radius of the spherical oil
droplet by r , and the number of the oil droplets per unit volume by n. The following relations

1 In some references, the mean curvature is defined as H = +(c1 + c2)/2, but according to differential geometry, it is
more appropriate to define it with a negative sign.
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Figure 9. Phase diagram of various droplet structures based on the curvature elasticity model. The
horizontal axis is x = −κ̄/(2κ + κ̄) and the vertical axis is y = 3c̃0δφo/φs (see the text). The
droplet phase coexists with the excess oil phase in the ‘emulsification failure’ region.

hold from the incompressibility condition; φo = (4π/3)r 3n and φs = 4πr 2δn. Hence, we have

r = 3δφo

φs
, n = φ3

s

36πδ3φ2
o

. (15)

On the other hand, if we put c1 = c2 = c in equation (14) and minimize with respect to c,
we obtain

c̃0 = c0

(
1 + κ̄

2κ

)−1

. (16)

Notice that r is given by the composition of oil and surfactant, while 1/c̃0 is the material
constant, and they generally differ. In the droplet phase, the competition between the two
length scales (r and 1/c̃0) determines the phase behavior.

When the amount of surfactant is large so that c̃0r < 1, the system is in a one-phase state
forming the droplet phase. In this situation, the droplet size decreases and the droplet number
increases as φs becomes larger. However, when φs is small enough so that c̃0r > 1, some of
the oil cannot be incorporated in the droplets and exists as an excess phase. This results in
macroscopic phase separation, which is called emulsification failure. When this occurs, the
droplet size is always given by 1/c̃0 which minimizes equation (14). Emulsification failure
occurs when c̃0r ≈ 1.

So far, we have considered spherical droplets, yet they can be also cylindrical or flat
(lamellar). The radius of a cylindrical droplet is given by 2δφo/φs. The (dimensionless)
curvature energies per unit area of spherical ( fsph), cylindrical ( fcyl), and flat structures ( flam)
are respectively given by

fsph

2κ̃ c̃2
0

= 1

y2
− 2

y
, (17)

fcyl

2κ̃ c̃2
0

= 9

16y2
(1 + x)− 3

2y
, (18)

and flam =0, where κ̃ = κ + κ̄/2, x = −κ̄/2κ̃ , and y = c̃0r . By comparing these energies, we
obtain the phase diagram shown in figure 9 [35].
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The cylindrical structure appears when the absolute value of the negative saddle-splay
modulus κ̄ is small, i.e. x < 1/3. As x becomes larger, only the spherical and lamellar
structures exist. The lamellar structure is more stable when c̃0 is smaller. When x = 0 (or
κ̄ = 0), the energies of the spherical and cylindrical droplets are degenerate. This means that
spheres and cylinders coexist at x = 0.

The discussion up to now is correct when thermal fluctuations are negligible compared
with the curvature energy. Since the entropic effect stabilizes small objects, the region of the
spherical droplet expands when the entropy of mixing is taken into account. The effect of
thermal fluctuations is discussed in [36]. Moreover, the above theory has been generalized
to include translational entropy, cylinder length polydispersity, and radial polydispersity [37].
Recently, an analogy between emulsification failure and Bose–Einstein condensation has been
proposed [38, 39].

4.3. Persistence length

Various experiments indicate that the bending modulus of a monolayer is of the order of several
kBT . Hence, the membrane’s shape may be strongly affected by thermal fluctuations. As
a quantity characterizing the membrane undulation due to thermal fluctuations, the so-called
persistence length can be introduced [40], i.e.

ξκ ≈ a exp

(
4πκ

αkBT

)
. (19)

Here a is a microscopic length scale, and we assume α = 1 in the following discussion. On a
length scale larger than ξκ , the correlation in the membrane normal direction is completely lost
and the membrane takes on a random configuration. On the other hand, the membrane can be
regarded as statistically flat on a small length scale.

For a length scale comparable to ξκ , the curvature energy competes with the configurational
entropy of the membrane. The effect of thermal fluctuations can be expressed in terms of a size-
dependent effective bending modulus. For a membrane of size L, the renormalized bending
modulus is [17, 41, 42]2

κeff(L) = κ

[
1 − kBT

4πκ
log(L/a)

]
. (20)

This formula states that the large-scale bending modulus is reduced due to thermal fluctuations3.
The effective bending modulus κeff vanishes when the membrane size L becomes comparable
to the persistence length ξκ . In this limit, there is no energy cost for bending.

Hereafter, we consider a ‘balanced’ microemulsion in which the amounts of oil and water
are almost the same (φo ≈ φw) and the spontaneous curvature is close to zero (c0 ≈ 0). We
expect that the lamellar phase will appear in the absence of thermal fluctuations since a flat
membrane (c1 = c2 = 0) minimizes the curvature energy. In reality, however, a random
bicontinuous structure appears instead of the lamellar phase when φs is relatively small (see
figures 5 and 6).

The existence of the bicontinuous structure can be qualitatively understood from the notion
of persistence length [40]. In the lamellar phase, the distance between the monolayers dL is
determined by the average composition dL = δφo/φs ≈ δ/2φs when φo ≈ φw ≈ 1/2 � φs.
Following the argument for the droplet phase, the competition between the lamellar structure

2 The coefficients of kBT/(4πκ) in [41] and [42] are different. However, this difference is not essential in the
following discussion.
3 The saddle-splay modulus κ̄ is also affected by thermal fluctuations. The length ξκ̄ for which κ̄ vanishes corresponds
to the ‘topological’ persistence length [43–45].
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and the random bicontinuous structure is determined by the ratio ξκ/dL. The lamellar phase
is stabilized when ξκ > dL, whereas the random structure appears when ξκ < dL because the
membranes fluctuate to gain entropy. This is why a random bicontinuous structure is observed
at the tail of the ‘fish’ diagram (see figure 5).

Why does the three-phase body appear instead of the one-phase bicontinuous structure as
the surfactant amount decreases? This question is intimately related to the physical origin of
the middle phase. In the next subsections, we shall review some approaches to this problem.

4.4. Challenges to the bicontinuous structure

Talmon and Prager were the first to consider the bicontinuous structure of the middle phase [46].
In their picture, the whole space is divided into random Voronoi polyhedra, each filled with
either oil or water. All the surfactant molecules are assumed to adsorb to the flat interfaces
between oil and water. Their model takes into account the entropy of mixing between oil and
water. However, it does not consider the curvature energy of the membrane.

Jouffroy et al improved the Talmon–Prager model in the following way [12]. Instead of
dividing the space into Voronoi polyhedra, they considered cubic cells whose lattice constant
is determined by the persistence length ξκ . They allow the area per surfactant � to fluctuate
around �∗. Furthermore, they considered the curvature energy by choosing the local radius
of curvature to be ξκ . This model successfully explains the two-phase coexistence but cannot
obtain the three-phase coexistence, because the cell size is fixed to the persistence length ξκ .

Widom proposed a different model in which the size of the cubic cell is variable and is
determined in a self-consistent manner at each point on the phase diagram [47]. The surfactant
monolayers are assumed to form a compressible two-dimensional fluid in which the area
per surfactant � can vary significantly. However, this assumption is contradictory to what
happens at a saturated interface for which the area per surfactant is almost fixed to � = �∗.
Nevertheless, Widom could obtain the three-phase coexistence by introducing a microscopic
cutoff. He also concluded that the typical scale of the structure in the middle phase is of the
order of 10 nm. However, this length scale has nothing to do with the persistence length. Hence,
there was a problem in the Widom’s model whereby the variation of the phase diagram due to
the change in κ could not be reproduced.

4.5. Exxon model

Based on the above historical models, Safran and his group at Exxon Research and Engineering
proposed the following model [48–50]. As depicted in figure 10, they divide the space into
cubic cells whose size is d . Each cell is assumed to be occupied by either oil or water, and the
surfactant molecules adsorb to the interfaces. Half of the surfactant volume fraction is assigned
to oil and water volume fractions, i.e. φ = φw + φs/2.

The first important aspect of the Exxon model is that the cell size d is not determined by the
persistence length, but by the average composition of oil, water, and surfactant. The interface
is assumed to be saturated so that the area per surfactant is constant, i.e. � = �∗. Given this
condition and using a random mixing approximation, the cell size can be determined as

d = 6δ
φ(1 − φ)

φs
. (21)

The free energy (per unit volume) of mixing between oil and water is given by

fmix = kBT

d3
[φ logφ + (1 − φ) log(1 − φ)]. (22)

Note that 1/d3 is the number of cells per unit volume.
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Figure 10. Model of the middle phase with a random bicontinuous structure. The three-dimensional
space is divided into cubic cells of size d as given by equation (21). The shaded regions correspond
to oil, the thick solid lines represent surfactant, and the rest is water.

Figure 11. Phase diagram obtained from the Exxon model. The horizontal axis is the
oil concentration, and the vertical axis φ̃s = φs exp(1/t) represents the modified surfactant
concentration. The parameters are c0 = 0 and t = 0.2. The small φ region is magnified in the
inset. The filled circle represents the critical point. Reprinted with permission from [48].

On the other hand, the curvature energy per unit volume is estimated as4

fcurv = 8πκeff(d)

d3
φ(1 − φ)[1 − c0d(1 − 2φ)]. (23)

The second important aspect of the Exxon model is that the effective bending modulus
κeff(d) is used for the curvature energy. In terms of the persistence length ξκ , we can write
κeff(d) = −tκ log(d/ξκ), where t = kBT/4πκ is the dimensionless temperature. The sum of
equations (22) and (23) is the total energy per unit volume.

A typical phase diagram for c0 = 0 and t = 0.2 is shown in figure 11. (The horizontal axis
is φ and the vertical axis is φ̃s = φs exp(1/t).) Here, all types of coexistence are reproduced in
accordance with the phase behavior described in section 2.3. The inset shows the tielines in the
small φ region, and the filled circle indicates the critical point.

Figure 12 shows the phase diagram for equal volume fractions of oil and water (φo = φw).
Here, the horizontal axis is surfactant concentration φ̃s, and the vertical axis is dimensionless

4 The factor 8π comes from the approximation that the membrane is regarded as a part of a sphere of radius d/2. The
product φ(1 − φ) is proportional to the total area of the oil/water interface.
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Figure 12. Phase diagram obtained from the Exxon model when the volume fractions of oil and
water are equal. The horizontal axis φ̃s = φs exp(1/t) is the surfactant concentration, and the
vertical axis is the spontaneous curvature c0 scaled by the persistence length ξκ . The temperature
parameter is t = 0.151. Reprinted with permission from [50].

spontaneous curvature (the dimensionless temperature is t = 0.151) [50]. This phase diagram
is analogous to the ‘fish’ diagram in figure 5 if the spontaneous curvature is a smooth function
of temperature [51]. One can confirm that the spontaneous curvature vanishes when the three-
phase body meets the one-phase region.

4.6. Origin of the middle phase

Here, we briefly discuss why the Exxon model can describe the three-phase coexistence state.
Had we used a constant bending modulus κ instead of κeff(d) in equation (23), the total
energy would scale as fmix + fcurv ∼ φ3

s since d ∼ φ−1
s . This scaling means that there

is no characteristic length scale involved in the curvature energy [52]. We may conclude
that the phase transition never occurs, no matter how much the surfactant volume fraction
φs changes. However, the above contradiction disappears if equation (23) uses the effective
bending modulus κeff(d), because the persistence length enters as a new length scale through
κeff(d).

We mentioned before that the lamellar phase is stable when φs is large and ξκ > d ,
while the random structure is stable for the opposite conditions. Even if φs is very small, the
one-phase state should in principle persist as long as d increases according to equation (21).
As indicated by equation (22), however, the entropy dramatically decreases when d becomes
large. Hence, the system prefers to be random at small length scales so that the excess oil and
water separate macroscopically. When d becomes comparable to the persistence length ξκ , it
is energetically unfavorable for the membranes to fluctuate at a smaller length scale because
of the curvature energy. As a result of the balance between curvature energy and entropy, the
bicontinuous structure in the middle phase becomes random on the length scale ξκ . However,
it should be stressed that this fact is a consequence of the model, not of the assumption. Based
on the Exxon model, the correlation and structure functions of microemulsions were calculated
in [53]. An extension of the Exxon model is given in [54, 55].
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Figure 13. Transmission electron microscopy picture of a microemulsion in which an oil region has
formed a network structure. Many Y-shaped junctions exist as indicated by the arrows. Reprinted
with permission from [61].

In section 2.3, we defined the minimum surfactant volume fraction φ∗
s to mix oil and water.

Since d ≈ ξκ at the boundary between the three-phase body and the one-phase region, we put
φ ≈ 1/2 to obtain

φ∗
s ≈ 3δ

2ξκ
. (24)

Hence, φ∗
s is essentially inversely proportional to the persistence length ξκ .

After the Exxon model came out, Wennerström and Olsson proposed a simple free energy
for balanced microemulsions based on the flexible membrane model [56]. In their model, the
free energy per unit volume is given by

fWO = a3φ
3
s + a5φ

5
s , (25)

where a3 can be negative and a5 is positive for the reason of stability. The first term comes
from the length scale invariance of the curvature energy, as discussed before. The above model
can also explain three-phase coexistence when a3 < 0 [57]. This model and the Exxon model
were recently compared for balanced microemulsions [58].

4.7. Network structure

A bicontinuous structure appears when the spontaneous curvature is close to zero and the whole
system is balanced. When the spontaneous curvature is large enough, we encounter droplet
phases in which each globule is separated (see section 4.2). However, according to recent
transmission electron microscopy experiments, the oil region forms a tubular network structure
when the oil concentration is small [59]. Figure 13 is a picture of a network structure made
of long tubes connected by Y-shaped junctions. To describe such a network structure, Tlusty
et al proposed a model in which the competition between ‘end caps’ and ‘junctions’ of the
tubes plays an essential role [60–62]. In the following, we explain their model briefly. A more
extended treatment based on the spin model was given in [63].

First, we consider the network consisting of cylinders with different lengths. Let c(m) be
the number density of a cylinder of length m. (Here, the length of the cylinder is measured in
units of its diameter and hence m is dimensionless.) If the inside of the cylinder is filled with
oil, the volume conservation condition is

φo =
∫

mc(m) dm. (26)

Since the number density of a z-folded junction ρz is 1/z times the number density of an
isolated cylinder that has two end caps, it is given by

ρz = 2

z

∫
c(m) dm. (27)

19



J. Phys.: Condens. Matter 19 (2007) 463101 Topical Review

Here we fix z and consider the competition between the end caps of z = 1 and z-folded
junctions.

By using these quantities, the free energy per unit volume can be written as [64]

fn

kBT
=

∫
c(m)[log c(m)− 1] dm + ρzεz + (1 − z)ρz logρz, (28)

where εz is the energy (divided by kBT ) required to form a single junction from z cylinders.
The first term of equation (28) is the translational entropy of the free cylinders, and the second
term corresponds to the curvature energy of the junctions. The last term represents the loss of
the entropy when a single junction forms from z free end caps.

By minimizing the free energy (28) with respect to c(m) under the constraint of (27), we
obtain

c(m) ∼ exp(−2εz/z) ρ
2(1−1/z)
z exp(−m/M), (29)

which is an exponentially decaying distribution function. Here, M ∼ φ
1−z/2
o eεz and the

coefficient of order unity is omitted. Substituting equation (29) into (28) yields the minimized
free energy:

fn

kBT
= −ρz ∼ −φz/2

o e−εz . (30)

The above result has several interesting physical aspects. First, the junctions behave as
an ideal gas since the free energy has the form fn ∼ −kBTρz . Second, the term −φz/2

o e−εz

reflects an effective attraction between the oil molecules due to the presence of the junctions.
In particular, the Y-shaped three-fold junction (z = 3) gives rise to a term −φ3/2

o e−ε3 . This term
induces phase separation in the low φo limit by overcoming the repulsive excluded volume
interaction term (proportional to +φ2

o ). Accordingly, the phases of high and low density
junctions coexist in equilibrium. A detailed analysis indicates that the coexistence region forms
a closed loop [60].

Although a network structure forms when z � 3, the junctions of z � 4 seldom appear
because of the Boltzmann factor e−εz . Hence it is enough to consider the competition between
the end caps of z = 1 and the junctions of z = 3. The transition between the cylindrical
structure and the network structure is determined by the condition ρ1 � ρ3 or ε3 − ε1 � logφo.
Tlusty et al numerically estimated the curvature energies of the Y-shaped junction and the end
cap to obtain the following relation [61, 62]:

ε3 − ε1 = 4π
κ

kBT
(1.42c0r − 1.04)− 4π

κ̄

kBT
, (31)

where r = 3δφo/φs is the radius of the spherical droplet5.
As shown in figure 14, Tlusty et al were able to add a network structure to the

phase diagram of figure 9 [61]. The network structure exists between the cylindrical and
lamellar structures. Such a sequence of structural transitions is indeed observed in real
microemulsions [59].

5. Dynamics

5.1. Dynamics of microemulsion droplets

The bending modulus κ and the saddle-splay modulus κ̄ can be experimentally obtained from
various scattering experiments that can resolve fluctuations of oil/water interfaces. Consider a

5 Since r differs by a factor of 2/3 compared with that in [61], 1.42 in equation (31) is replaced with 2.14 in [61].

20



J. Phys.: Condens. Matter 19 (2007) 463101 Topical Review

Figure 14. Phase diagram of a microemulsion obtained from the model of Tlusty et al. The
horizontal axis is 2c0δφo/φs, and the vertical axis is 2δφo/(ξκφs). S is the sphere, C the cylinder, N
the network, and L the lamellar structure. S+C is the coexistence region between the spherical and
cylindrical droplets. Reprinted with permission from [61].

spherical oil droplet of radius r0. Let us denote the out-of-plane displacement of the membrane
by a(θ, ϕ, t) depending on angles θ , ϕ and time t . It is convenient to expand a(θ, ϕ, t) in terms
of spherical harmonics Ylm(θ, ϕ):

a(θ, ϕ, t) =
∑
l,m

alm(t)Ylm(θ, ϕ). (32)

Based on the curvature energy (14), Safran calculated the fluctuation amplitudes in thermal
equilibrium to be [65–67]

〈|alm |2〉
r 2

0

= kBT

κ

[
(l − 1)(l + 2)

{
(l − 2)(l + 3)+ 4c0r0 − 3κ̄

κ
− 3kBT

4πκ
f (φ)

}]−1

, (33)

where

f (φ) = 1

φ
[φ logφ + (1 − φ) log(1 − φ)] (34)

is the entropy of mixing per droplet.
In the presence of hydrodynamic flow, the membrane restoring force balances with the

viscous resistance force due to the surrounding fluid after a short initial period of motion. In
this case, the autocorrelation function of the out-of-plane displacement,

〈alm(t)al′m′(0)〉 = δll′ δmm′ 〈|alm |2〉 exp(−t/τlm) (35)

decays exponentially with a relaxation time τlm . By employing the Stokes approximation for
the hydrodynamic equations, several people have calculated the relaxation time under various
conditions [66, 68, 69]. The most general form obtained by Seki and Komura is [70, 71]

1

τlm
= κ

ηr 3
0

[
(l − 2)(l + 3)+ 4c0r0 − 3κ̄

κ
− 3kBT

4πκ
f (φ)

]
1

Z(l)
, (36)

with

Z(l) = (l − 1)(2l2 + 5l + 5)E + (l + 2)(2l2 − l + 2)

(l − 1)l(l + 1)(l + 2)
. (37)
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Here, E = η′/η is the ratio of the viscosities of the interior and the continuous phase of the
droplets. A somewhat similar calculation was performed by Lisy et al [72].

The situation becomes simpler when the droplet phase is in equilibrium with the excess oil
phase. Then the droplets achieve their optimum size r0 = 1/c̃0, as given by equation (16). In
the presence of the entropic term, one generally has

c0r0 = 1 + κ̄

2κ
+ kBT

8πκ
f (φ), (38)

instead of equation (16). By using this relation, we have the size polydispersity index p of the
microemulsion droplet,

p2 = 〈|a00|〉
4πr 2

0

= kBT

8π(2κ + κ̄)+ 2kBT f (φ)
, (39)

and the relaxation time τ2 for the ‘peanut-like’ deformation corresponding to the second-order
spherical harmonic (l = 2),

1

τ2
= 1

ηr 3
0

[
4κ − κ̄ − kBT

4π
f (φ)

]
24

32 + 23E
. (40)

The relaxation time can be measured by neutron spin-echo (NSE) spectroscopy [73, 74].
This technique measures the correlation functions of the Brownian motions in a sample. On
the other hand, the quantity p can be measured by small-angle neutron scattering (SANS) [75]
or dynamic light scattering (DLS) [76, 77]. By using equations (39) and (40), the combination
of NSE and either SANS or DLS enables us to determine the two elastic moduli [78]. For
example, it was reported that κ = 0.92kBT and κ̄ = −0.38kBT for a system consisting of
octane/water/C10E5 [76]. Such a combined technique has recently been used to measure the
effect of pressure on the bending modulus [79, 80]. The dynamics of dense microemulsion
droplets forming ordered cellular phases have also been investigated by NSE [81].

5.2. Dynamics of bicontinuous structure

So far we have discussed the deformation of spherical microemulsion droplets. Here we
review some of the approaches to describe the dynamics of a bicontinuous structure. Milner
et al suggested the existence of a mode associated with the formation and destruction of
passages between different parts of oil and water networks [82]. Such a topological relaxation
time is very long in phases with sharply defined interfaces and high activation energies.
Experimentally, a long-time diffusive relaxation mode was found in microemulsions consisting
of SDS, octanol, octane, and brine [83].

Gompper and Hennes calculated the dynamic structure function of microemulsions by
using the time-dependent Ginzburg–Landau model [84, 85]. In the simplest case, the equation
of motion for the order parameter ψ(r, t) (the difference between the oil and water volume
fractions) can be written as

∂ψ

∂ t
= L∇2 δFTS

δψ
, (41)

where FTS is the Teubner–Strey free energy given by equation (5) and L is the Onsager
coefficient. Notice thatψ is a conserved quantity. In this case, the dynamic correlation function
is

S(q, ω) = 2Lq2

ω2 + [2Lq2(cq4 + gq2 + a)]2
. (42)
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Gompper and Hennes conducted a field-theoretic study with a coupling to a hydrodynamic
flow field, and showed that the correlation function oscillates in time [84]. Equation (41) was
generalized to the case of a large number of components by Marconi and Corberi [86].

Later, Nonomura and Ohta used a variational approach to derive the equations of motion
for microemulsions [87]. The hydrodynamic interaction acting in the bicontinuous structure
is taken into account through the Oseen tensor. They showed that the intermediate structure
function S(q, t) consists of two exponential functions:

S(q, t)

S(q)
= (1 − f )e−�11(q)t + f e−�22(q)t . (43)

Here f is a small q-dependent constant, and the relaxation rate �11 contains the hydrodynamic
effect. NSE measurements on microemulsions containing C12E5 [88, 89] and C10E4 [90]
confirmed the validity of the above equation.

By extending equation (41), the rheology of bicontinuous microemulsions has been
investigated as well. In the presence of a flow v, the time evolution of the order parameter
ψ(r, t) can be written as

∂ψ

∂ t
+ ∇ · (ψv) = L∇2 δFTS

δψ
, (44)

where the velocity field is governed by the Navier–Stokes equation. Such a model was first
proposed by Pätzold and Dawson [91, 92]. Under a steady shear flow, Corberi et al predicted
a shear thinning behavior of microemulsions [93, 94]. Later Rapapa and Maliehe calculated
the dynamic structure function S(q, t) under the shear flow along the Lifshitz line [95]. They
predicted that S(q, t) shows multiscaling behavior, i.e. the characteristic length scales as t7/6

in the flow direction, and as t1/6 in directions perpendicular to the flow.
The above Ginzburg–Landau approach is valid for the intermediate and low-q regimes,

i.e. q � q∗ where 2π/q∗ is the typical domain size (see equation (4)). For the high-
q regime, q � q∗, Zilman and Granek developed a theory in which microemulsion is
treated as an ensemble of independent membranes with random orientations [96, 97]. The
approximate expression for the intermediate structure function of an orientated membrane (in
the z-direction) is a stretched exponential function

S(q, t)

S(q)
≈ exp[−(�qz t)

β], (45)

with β = 2/3 and the qz-dependent relaxation rate is

�qz = 0.0246

(
kBT

κ

)1/2 kBT

η
q3

z . (46)

To compare this equation with the experimental results, an average over all possible orientations
of the membranes should be performed [96, 97]. The Zilman–Granek theory has been
experimentally confirmed for microemulsions containing C12E5 by light scattering [98] and
NSE [89].

6. Polymeric microemulsions

This section discusses microemulsions that have been found in polymeric systems. In
these systems, diblock copolymers act as amphiphilic molecules. Various ordered structures
form in pure diblock copolymer melts as a result of the microphase separation [99].
Recently, attention has focused on polymer mixtures that contain diblock copolymers and
homopolymers. For example, in ternary mixtures consisting of AB block copolymer/A
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Figure 15. Transmission electron micrograph of a polymeric bicontinuous microemulsion
consisting of symmetric PE-PEP/PE/PEP mixtures. Reprinted with permission from [100].

homopolymer/B homopolymer, the AB block copolymer adsorbs to the interface between the
two homopolymers.

Similar to low molecular weight surfactants, there is a loss in mixing entropy when block
copolymers adsorb to the interface. For diblock copolymer molecules, however, there is an
additional loss in stretching entropy since the adsorbed molecules become elongated at the
interface. Moreover, diblock copolymers spontaneously form various ordered structures by
themselves, which do not occur for small surfactants. Although there are several differences
between diblock copolymers and small surfactants, the mesoscale structures which are formed
in polymeric ternary systems are analogous to those in ternary microemulsions consisting of
oil/water/surfactant.

Some years ago, Bates et al found a random bicontinuous structure between the lamellar
phase and the two-phase coexistence region in a polymeric ternary system [100–103].
The electron microscope picture in figure 15 is very similar to the bicontinuous structure
observed in the low molecular weight microemulsion in figure 6. Hence, they called these
structures polymeric microemulsions, and these have been found in several polymer mixtures.
Concerning the physical origin of the polymeric microemulsions, Bates et al considered
that the homopolymers swell the lamellar structure and thermal fluctuations destroy the
lamellar order. There are theoretical predictions for efficient design of bicontinuous polymeric
microemulsions [104, 105].

Thermal fluctuations do not have much effect on polymeric systems because each poly-
mer consists of a large number of monomers. Hence, the properties of polymeric systems can
be quantitatively described within a mean-field theory. In the self-consistent mean-field theory
originally formulated by Edwards [106], the many-body problem is reduced to solve the config-
uration of a single chain in an external field. However, since this theory has difficulty in dealing
with non-uniform systems, many approximations have been proposed over the past years. Re-
cently, it became possible to solve the set of self-consistent equations numerically without using
any approximation [107]. This method has been applied to polymeric ternary mixtures by Mat-
sen to estimate the elastic properties of a diblock copolymer monolayer and the effective inter-
action between monolayers [108–110]. Also using self-consistent field theory, Kodama et al in-
vestigated the physical origin of polymeric microemulsions. They suggested that polymeric mi-
croemulsions are not induced by thermal fluctuations, but appear as a result of microphase sepa-
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Figure 16. Bicontinuous structure calculated according to the real-space self-consistent field theory.
Black and white regions correspond to A and B homopolymer rich regions, respectively.

ration without any structural order [111, 112]. Figure 16 shows the structure of a polymeric mi-
croemulsion obtained from a real-space calculation. A different approach to incorporate the ef-
fect of thermal fluctuations in field theory of ternary blends was proposed by Düchs et al [113].

The dynamic properties of polymeric bicontinuous microemulsions have recently attracted
a lot of interest. For example, it was reported that shear flow transforms the microemulsion
phase into a three-phase coexistence at strong shears, and it is followed by macrophase
separation of homopolymers [114, 115]. For an intermediate shear rate, the viscosity shows
shear thinning and the structure function is rendered anisotropic by the flow. The transient
rheology [116] and linear viscoelasticity of polymeric microemulsions [117] have also been
investigated. In the latter work, experimental data were compared with the theoretical
predictions by Pätzold and Dawson [91, 92]. Using Brownian dynamics molecular simulations,
Narayanan et al reproduced flow-induced phase transitions in ternary polymer blends [118].
Their results are in accord with the actual dynamical behavior of polymeric bicontinuous
microemulsions [114, 115].

7. Recent applications of microemulsions

Let us review some of the recent applications of mesoscale structures in microemulsions.

(i) An interesting situation occurs when a small amount of amphiphilic diblock copolymer is
added to a low molecular weight microemulsion. That is, there is a dramatic enhancement
of the solubility between oil and water [119]. In figure 17, we show how the ‘fish’
phase diagram is modified in the presence of block copolymers. The addition of the
amphiphilic block copolymer shifts the one-phase region to a smaller amphiphile volume
fraction. Hence, the total volume fraction needed to form thermodynamically stable one-
phase microemulsions is lower if a diblock copolymer/surfactant mixture is used instead of
pure surfactant. Such a finding is very important and has been called the ‘boosting effect’.
Neutron scattering experiments demonstrated that the polymers form uniformly distributed
mushroom conformations on the surfactant membrane [120–123].
This solubility phenomena can be attributed to the increase in the effective bending
modulus caused by the addition of block copolymers. We should remind the reader that
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Figure 17. Three-phase body (3) and adjacent one-phase region (1) for water/n-decane/C12E5

containing equal volume fractions of oil and water. Addition of the amphiphilic block copolymer
PEP10–PEO10 shifts the one-phase region to a smaller volume fraction φC+D. δv denotes the
volume fraction of polymer in the surfactant. Reprinted with permission from [120].

according to equation (24), the minimum surfactant volume fraction needed to mix oil and
water scales as φ∗

s ∼ ξ−1
κ , where ξκ is the persistence length defined by equation (19).

Hence, φ∗
s becomes smaller for a larger bending modulus. In the mushroom regime, the

effect of polymer decoration on membrane elasticity is calculated to be [124]

κblock = κ + kBT

12

(
1 + π

2

)
σ(R2

w + R2
o), (47)

where σ is the number density of block copolymers within the membrane, and Rw/o is
the end-to-end distance of the hydrophilic/hydrophobic polymer block. The increase in
bending modulus due to the polymers in the brush regime was calculated by Komura
and Safran [125]. Later, dynamics of bicontinuous microemulsions with and without
amphiphilic block copolymers were compared using NSE and DLS [126].

(ii) In contrast to amphiphilic block copolymers, the addition of two homopolymer chains
diminishes the effect of the surfactant (‘inverse boosting effect’) [127]. In this case,
a decrease in bending modulus was observed as homopolymer content increased. On
the other hand, homopolymers increase the viscosities of oil and water. Dynamical
measurements of the corresponding system revealed that the addition of homopolymer
indeed reduces the bending modulus [128, 129].

(iii) Recently, Nakaya et al investigated the effect of confinement of water-soluble polymers
inside spherical microemulsion droplets [130]. They showed that spherical droplets
deformed to prolate ellipsoid droplets upon confinement, while keeping the total surface
area and the volume of all the droplets constant. Increasing the degree of polymer
confinement even further caused an isotropic–nematic transition in the concentrated
droplet region. This result may be applicable to drug delivery.

(iv) It is known that systems composed of O/W microemulsion droplets linked by telechelic
polymers form a multiconnected transient network [131]. Here, telechelic polymers have
a hydrophilic backbone with a hydrophobic group at each chain end. These mixtures
provide a wide range of technological applications such as cosmetics, paints, and oil
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recovery. In such systems, the large one-phase region consists of a fluid sol phase and a
viscoelastic gel phase separated by a percolation line. On the other hand, phase separation
into a dilute sol phase and a concentrated gel phase occurs in the two-phase region [131].
The phase behavior and structure of microemulsion–telechelic mixtures was theoretically
studied by Zilman et al [132]. Here the phase transition is driven by the competition
between the translational entropy of the droplets and the configurational entropy of the
polymer connections between them. The immunity of such a transient network to random
degradation of the polymers has also been studied [133].

(v) Due to the presence of both polar and nonpolar solvents within the homogeneous
continuum, microemulsions are often used as reaction media. For example, these systems
are used for preparative organic synthesis and in bio-organic reactions such as lipase
catalysed reactions. There have been many attempts to fix the mesoscale structures of the
microemulsion through chemical reactions within the system. For instance, polymerization
reactions can be used in microemulsions to produce analogs of latex particles [134].
Various other applications using reactions in microemulsions have been investigated in
relation to catalysis, drug delivery, etc. Chemical reactions in microemulsions were
theoretically studied by Ganesan and Fredrickson; they considered the effects of thermal
fluctuations on reaction kinetics [135]. Fluctuations increase the reaction rate but do not
affect the long-time dynamical evolution.

8. Conclusion

This review focused on microemulsions consisting of oil/water/surfactant and explained their
mesoscale behaviors from the viewpoint of soft matter physics. Several phenomenological
approaches turn out to be quite useful. For instance, the Ginzburg–Landau theories and
membrane theories are universal. We also discussed polymeric microemulsions as a related
system. It is quite surprising that the variety of mesoscale structures and macroscopic phase
behaviors of microemulsions can be described by fairly simple models.

We limited the discussion to cases where the amount of surfactant is relatively small.
Various liquid crystalline phases start to appear as the surfactant concentration increases.
Microemulsions exhibit various delicate properties because they have characteristics of both
liquids and liquid crystals. The structure, phase behavior, and dynamics of microemulsions are
‘intermediate’ between those of liquids and liquid crystals.
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